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1 Introduction

The vicious walker is an algorithm that can be used to model chemical reactions. In this model we
what we call walkers, in an n-dim space (n = 1,2,3,...) that each step in time from a time ¢t — At
with At the time step, the vicious walker walks moves to a random neighboring tile. In this project
we will consider two types of vicious walkers, a standard vicious walker vicious walker and a ”friendly”
vicious walker which instead of mimicking reactions could be said to mimic how a population behaves.

2 Methods

2.1 Standard vicious walker

We start with an n-dim box (n = 1,2,3,...) with an integer side length I. The volume V of the box
is then {". Now we select n random numbers R; € [1,{] (i = 1,2,...,!) and if the position in our box
X = R1X1 + RoXs + - - - + R, X, is not occupied, place a walker there, otherwise generate new random
numbers and check the position again and repeat until all the desired number of walkers have been
placed. Then for each time step we move each walker into a random neighboring tile by choosing a
random number R € [1,n] and going in the Xgr direction. If moving in this direction leads to the
walker leaving the box, we reject the move and go to the next walker (closed box) or it teleport to the
opposite side (open box). If two walkers walk into the same tile they annihilate. For long times in
1, 2, and 3 dimensions, the average density (p)=(N/V) with N — oo and V' — oo in the box should
follow at large ¢ [1]

t=1/2, 1D
(p) x < t~llog(t), 2D (1)
t~ L, 3D.

2.2 Friendly vicious walker

First we make the same initial steps as with the standard vicious walker. Now, instead of walkers
annihilating each other when they meet, the have a probability prertiiy to make a new walker at
that position and move the parent walkers to their previous position. To have a chance at making
a new walker, both walkers must have a lived through nproducing time steps. Each walker also has a
probability p3% to die each time step. We also introduce a food system with some starting food and
each turn the food regenerates by a specific amount. Each walker eats one food each step and if there
is no more food to go around the walkers that did not get food all die of starvation. Hence we limit the
maximum amount of walkers in our box (which is not the volume of our box). To make it a bit more
interesting, we later introduce infections with a starting amount of the initial walkers being infected
and each time step, there is a probability for any walker to be infected. If a walker is infected, it in

o mfenti
turn has a probability die each turn pig; *"'°".

3 Results and discussion

In this section we will display all of our results and the parameters used for each model and plot
starting with the standard vicious walker.

3.1 Standard vicious walker

In figure [1f we see the density of the number p(¢) walkers as a function of time for the simple vicious
walker. All of the figures have the exact same initial conditions, with the only difference being the
number of dimension that the walker can move in. Note that the figures display the mean result (blue
line) for 5 simulations and the blue fill represents 1 standard deviation. The first ten steps have been
taken out to avoid division by zeros when comparing making the best fit for the simulation (orange line).
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(a) Vicious walker density as a function of time in
with D = 1, Starting density = 0.2, Initial walkers =

1100, Volume = 5500.0.
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(b) Vicious walker density as a function of time in
with D = 3, Starting density = 0.2, Initial walkers =
1100, Volume = 5500.0.
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(c) Vicious walker density as a function of time in
with D = 3, Starting density = 0.2, Initial walkers =

1100, Volume = 5500.0.

Figure 1: The average density of walkers in time in 3,2 and 1 dimensions.

So as we can see, comparing our results for the best fit with the thermodynamic limit of equation ,
we see that only for 2 dimensions, this seems to match (see figure . For dimensions 1 and 3, we see
that the rate at which the density decays is slower than in the thermodynamic limit. Why this is the
case only for 1 and 3 dimensions, could be that there simply is not enough data (only averaged over
5 runs) or that the the number of initial walker and volume are too small (the thermodynamic limit
holds for N — oo and V' — o0). However this argument should also hold for 2 dimensions. There
could also be some bug in the code that for some reason does not show up in two dimensions but
only for 1 and 3 although unlikely since the only difference in the code is just adding or removing a

direction.



3.2 Friendly walker
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(c) Friendly walker with infection density as a func-
tion of time in with D = 3, Starting density = 0.2,
Initial walkers = 100, Volume = 500.0.

Figure 2: The average density of walkers in time in 3,2 and 1 dimensions.

Figure [3| shows the average density for the the friendly walker in 1, 2 and 3 dimensions with all other
parameters unchanged without any infections. Same as for the vicious walker, the blue line is the
average density over 5 simulations and the blue fill is one standard deviation. The parameters are as
follows: pS%s = 1/100, Prertitity = 1/200 and nproducing = 14, starting food = 200, food regeneration =
200. An important thing to note is that multiple walkers are allowed to be born at the same position.
This is a bug in the code from when we move back the walker. If it has already reproduced and then
another walker moves into this position, they might produce another walker. But when we move back
this walker which has now reproduced twice, it just stays in the same place as the newborn which
allows for p(t) > 1.

As we can see, limiting the food has a large affect on the overall population as we can see with the
sharp drop in density for each of the figures in[3] In the beginning of each simulation, there is enough
food to go around (200 for 100 walkers) and each step, the food pile gets larger by 200. So when the
population reaches 200, the food supply is steadily going down until it reaches zero, at which point
there might be 300 walkers. Since we only generate 200 food each step, 100 walkers die of starvation
at once.

Now one thing of note is that we notice that compared to the vicious walker, we have a much larger
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(a) Friendly walker density as a function of time in
with D = 2, Starting density = 0.2, Initial walkers =
100, Volume = 500.0.

(b) Friendly walker density as a function of time in
with D = 2, Starting density = 0.2, Initial walkers =
100, Volume = 500.0.
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(c¢) Friendly walker density as a function of time in
with D = 3, Starting density = 0.2, Initial walkers =
100, Volume = 500.0.

Figure 3: The average density of walkers in time in 3,2 and 1 dimensions.

standard deviation. This is due to the many more parameters and probabilities in the model. Ex.
instead of just having two walkers in the same position annihilate, they instead have a probability
to reproduce. We also see that as time goes on for all the dimensions (except 1 which requires more
time-steps), the conditions for reproducing are not large enough to keep a stable population. This is
largely due to the food limitation as discussed above as without it, each simulation would continue to
grow (due to the bug allowing for p(t) > 1). But also due to there just not being enough walkers to
reproduce, i.e the probability for them to die of old age is larger than the probability for two walkers
to reproduce and two walkers to meet (together with the walkers not being able to reproduce for 14
steps).

3.3 Friendly walker with infection

Now we can move onto friendly walkers with infection spread. All of the figures in figure [2] have the
same paramters as with the friendly walkers except for the additional parameters; #initial infected =
#initial walkers/10, pifection = 1/10, precover = 1/2 and ptart. = 1/(104#initial walkers).

With these additional parameters, we see that regular triangle shapes in figures and start to
disappear and the simulation reaches a steady state (i.e all walkers are dead) faster than in the regular
friendly walkers without infections. This is expected since we only make walkers dying more probable.
Note that the number of initial infected in our simulation is too small to start a pandemic and instead



the infection dies out, but the number of infected walkers also follows population growth. This is
because every walker has a probability p5tart . = 1/(10#initial walkers) to get infected. So the more
walkers the larger the probability to start an infection and also it is more probable that the infected

walker will pass on the disease to another walker.

In the future one could add different infections (here they are all the same) with new probabilities of
recovering, dying and so on. Another thing to make the system more physical could be to more mimic
the pif = p3E(t) to an existing curve that is know in nature instead of it being uniform. However
the main thing to change would be to make every walker have it’s own parameters of presility and pi%:
that they can pass on to their children which could emulate evolution of a species.

4 Conclusion

So as we have seen with the vicious walker, the density of the vicious walker does behave like the
thermodynamic limit, however not entirely. Why this is the case could be that the volume and number
of walkers are too small in the simulation. We have seen that the density of friendly walkers with
the current set of parameters, decrease for all dimensions. However as we increase the number of
dimensions the quicker the walkers die out due to old age and we note that there is a population
boundary for the walkers not dying out which grows with the number of dimensions. We also note by
introducing infections to the friendly walker that the walkers die out faster as expected and that the
number of infected walkers closely follows population growth. In the future to simulate a population
better, the friendly walkers could have private parameters instead of global ones with a global mean
and variance that they could then pass on to their children.
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